Form No. 2

Bridge Design	1. Cable Design

- 2. Anchor Block Design
- **3. Bridge Standard Drawings**

Bridge Name:	
River Name:	
District Name:	
Designed by:	
Date:	

Bridge No:District:Span:Walkway Width (70 or 106):

1. Cable Design for Suspended Bridge Type

A. Survey Data and Calculation of Freeboard

(if the freeboard is less than 5.00m, **try** either to raise the saddle elevations or to adjust the span, but keep the ratio between span and sag always **fixed** at $\ell/b_d = 20$ or $\ell/b_d = 22$)

B. Selection of Cables

Select a cable combination according to the span and walkway width of the bridge. Always select the higher cable combination, when the span is in between two values.

Maximum	Span for	C	Weight of			
70cm	106cm	Handrail Cables		Handrail Walkway Cables Cables		all Cables gh
span [m]	span [m]	nos	nos Ømm		Ømm	[kg/m]
50	40	2	26	2	26	10.04
90	60	2	26	2	32	12.62
100	75	2	26	4	26	15.06
120	105	2	26	4	32	20.22
	120	2	32	4	32	22.80

Above cable combinations are calculated for the following specifications:

Cables:	construction 7 x 19, wire strand c	core, 160 kg/mm² (1.57 kN/mm ²) tensile strength						
Safety Factor:	minimum 3 or higher than 3							
Live load	$p = (300 + \frac{5000}{span}) \text{ kg/m}^2 \text{ or } (3 + \frac{5000}{span})$	$\mathbf{p} = (300 + \frac{5000}{span}) \text{ kg/m}^2 \text{ or } (3 + \frac{50}{span}) \text{ kN/m}^2$						
or	$p = 400 \text{ kg/m}^2 (4 \text{ kN/m}^2)$ if the	span is 50.0 m or less						
Sag to Span Rati (in dead load case)	 io: = 20 for Spans up to 80 meters = 22 for Spans over 80 meters 	S						
Max. permissible	e Height Difference of Saddles: h =	$=\frac{span}{25}$						
Example:	width of walkway = 70cm;	span = 88m						
-	\Rightarrow selected cable combination:	Handrail Cables $2 \varnothing 26mm$						
		Walkway Cables 2 \varnothing 32mm						
		Weight of Cables = 12.62 kg/m						

Selected Cable Combination and Parameters from the Table above:

HRC	Handrail Cables:	nos 2	Ø	mm
WWC	Walkway Cables:	nos	Ø	mm
Weight o	of all Cables per meter	g _h	kg/m	

C. Calculation of Cable Length

Type of Cable	Dia (mm)	Nos	Backstay Length * [m]	Cutting Length** [m/pc]
Fixation Cable	13	2		
Handrail Cable		2		
Walkway Cable				

*Backstay Length = Cable length between saddle center and center of dead man or drum as per foundation drawing (both banks) + 6.0m. Calculate backstay length after selection of foundation blocks. **Cutting Length = 1.1 x Span + Backstay Lengths

D. Calculation of (fmin & fmax)Hoisting Sag

This calculation has to be made after tower and foundation work is completed

1. Actual Span measured in the Field						=	m
2. Saddle Elevation of the walkway cable a	2. Saddle Elevation of the walkway cable on the higher side						m
3. Saddle Elevation of the walkway cable a	on th	e lo	wer side		Eℓ	=	m
4. Difference in Elevation	h	=	$\mathbf{E}_{\mathbf{h}}$ - $\mathbf{E}_{\boldsymbol{\ell}}$	=	h	=	m
5. Dead Load Sag for Spans up to 80m	$\mathbf{b}_{\mathbf{d}} = \frac{\ell}{20}$			=	bd	=	m
for Spans over 80m $\mathbf{b}_{\mathbf{d}} = \frac{\ell}{22}$				=	bd	=	m
6. Hoisting Sag	bh	=	0.95 x b _d	=	bh	=	m
7. f min (in hoisting case)	fmir	n =	$\frac{(4\!\cdot\!\boldsymbol{b}_h-h)^2}{16\!\cdot\!\boldsymbol{b}_h}$	=	fmin	=	m
8. \mathbf{f}_{\max} (in hoisting case) $\mathbf{f}_{\max} = \mathbf{f}_{\min} + \mathbf{h}$				=	f _{max}	=	m
9. Elevation of Cable low point (in hoisting case) = $\mathbf{E}_{\ell} - \mathbf{f}_{\min}$						=	<u></u> m

2. Anchorage Type (Foundation) Design for Suspended Bridge Type

A. Design Data * Fill in the following Design Data from Form No. 1: Survey Form and Checklist

• Walkway Width, WW (70 or 106cm):cm								
• Bridge Span:	m							
Right Bank Condition								
Geology:	Soil							
If Soil , how is the Ground Surface?	Flat (up to 10° slope)	or	Hill Slope (more than 10° slope)					
What is the Soil Type?	Gravelly	Sandy	Silty					
Tower Height from Ground up to H.C.Saddle (data from bridge profile):	2.4m	3.4m	4.4m					
If Rock, what is the Rock Type?	Hard Rock	Hard Rock	Soft Rock					
	(only few fractures)	(highly fractured)						
Tower Height	2.0m in	Case of Rock						
	Left Bank Condit	ion	-					
Geology	Soil							
If Soil , how is the Ground Surface?	Flat (up to 10° slope)	or	Hill Slope (more than 10° slope)					
What is the Soil Type?	Gravelly	Sandy	Silty					
Tower Height from Ground up to H.C.Saddle (data from bridge profile):	2.4m	3.4m	4.4m					
If Rock , what is the Rock Type?	Hard Rock	Hard Rock	Soft Rock					
	(only few fractures)	(highly fractured)						

B. Selection of Anchorage Types

Select appropriate anchorage type at Right and Left Bank according to the above design data.

Procedure for Selection:

• According to the Soil/Rock type and Slope of the ground, refer to respective tables for selection of Anchorage Types as per below.

for Soil and Flat Ground	:	Table 1
for Soil and Hill Slope	:	Table 2
for Hard Rock	:	Table 3 or Table 4
for Fractured Hard Rock or Soft Rock:		
Span up to $90m$ (WW = $70cm$) and up to $60m$ (WW = $106cm$)	:	Table 5 or Table 6
Span Range 91-120m (WW = 70cm), 61-120m (WW = 106cm):	Table 7

• In the Table match the Design Data: Selected Walkway Width → Bridge Span → Tower Height → Soil Type → Select the corresponding Anchor Type and Drawing No. for right bank and for left bank respectively.

Anchor Type Selection Tables

• In Soil and Flat Ground:

Table 1: Selection of Gravity Soil Anchor Block in Flat Ground

Span Range, m		TowerFoundationHeightGumm		Block Type	Drawing	
Walkway:70cm	Walkway:106cm	[m]	Soil Type	Dioth Type	No.	
		2.4		1F	21Dcon	
Up to 45m	Up to 30m	3.4	All	2F	22Dcon	
		4.4		3F	23Dcon	
		2.4		4F	24Dcon	
46 - 90	31 - 60	3.4	All	5F	25Dcon	
		4.4		6F	26Dcon	
	61 - 75	2.4		7F	27Dcon	
91 - 120		3.4	All	8F	28Dcon	
		4.4		9F	29Dcon	
	2.4			10F	30Dcon	
-	76 - 90	3.4	All	8F	28Dcon	
		4.4		11F	31Dcon	
		2.4		12F	32Dcon	
-	91 - 105	3.4	All	8F	28Dcon	
		4.4		13F	33Dcon	
			Gravely	12F	32Dcon	
		2.4	Sandy, Silty	14F	34Dcon	
-	106 - 120	3.4	A 11	15F	35Dcon	
		4.4	All	13F	33Dcon	

• In Soil and Slope Ground:

Table 2: Selection of Gravity Soil Anchor Block in Hill Slope

Span Range, m		Tower Height	Foundation	Block	Drawing	
Walkway:70cm	Walkway:106cm	[m]	Soil Type	Туре	No.	
Up to 60m	Up to 40m	2.4	All	1 S	41Dcon	
61 - 90	41- 60	2.4	All	2S	42Dcon	
91 - 120	61-75	2.4	All	3S	43Dcon	
			Gravely	4S	44Dcon	
-	76 - 90	2.4	Sandy	5S	45Dcon	
				Silty	6S	46Dcon
			Gravely, Sandy	7S	47Dcon	
-	91 - 105	2.4	Silty	8S	48Dcon	
			Gravely, Sandy	8S	48Dcon	
-	106 - 120	2.4	Silty	9S	49Dcon	

• In Hard Rock for all Span Ranges:

Table 3:	Selection	of RCC	Single	Drum .	Anchor	in Hard	Rock
I dole et	, percetton	01 1100	Single	Diami	menor		noon

Span Range, m		Tower Height	Block Type	Drawing
Walkway:70cm	Walkway:106cm	[m]	DIOCK Type	No.
up to 90	up to 60	2.0	1HRS	61Dcon
91 - 120	61 - 120	2.0	2HRS	62Dcon

When slope is too steep and there is not enough space for single drum anchorage system (Table 3), select the double drum system from following table 4.

Table 4: Selection of RCC Double Drum Anchor in Hard Rock

Span Range, m		Tower Height	Block Type	Drawing No.
Walkway:70cm	Walkway:106cm	[m]		
up to 90	up to 60	2.0	1HRD	63Dcon
91 - 120	61 - 120	2.0	2HRD	64Dcon

• In Fractured Hard Rock/Soft Rock for Span Range up to 90m (WW = 70 cm) and 60m (WW = 106cm):

Table 5: Selection of RCC Single Drum Anchor in Fractured Hard Rock/Soft Rock

Span Range, m		Tower Height	Block Type	Drawing
Walkway:70cm	Walkway:106cm	[m]	Бюск турс	No.
up to 90	up to 60	2.0	1FRS	65Dcon

When slope is too steep and there is not enough space for single drum anchorage system (Table 5), select the double drum system from following table 6.

Table 6: Selection of RCC Double Drum Anchor in Fractured Hard Rock/Soft Rock

Span Range, m		Tower Height	Block Type	Drawing
Walkway:70cm	Walkway:106cm	[m]	Diver Type	No.
up to 90	up to 60	2.0	1FRD	66Dcon

• In Fractured Hard Rock/Soft Rock for Span Rang of 91- 120m (WW = 70 cm) and 61-120m (WW = 106cm):

Table 7: Selection of RCC Deadman Anchor in Fractured Hard Rock/Soft Rock

Span Range, m		Tower Height	Block Type	Drawing
Walkway:70cm	Walkway:106cm	[m]	DIOCK Type	No.
91-120	61-120	2.0	2FRD	67Dcon

Selected Anchorage Foundation Type and corresponding Drawings from the Table above:

Right Bank:Anchor TypeDrawing No.....Left Bank:Anchor TypeDrawing No.....

Example:

Design Data

* Fill in the following Design Data from Form No. 1: Survey Form and Checklist

 Walkway Width, WW (70 or 106cm):70				
	Right Bank Condi	tion		
Geology:	Soil 4			
If Soil , how is the Ground Surface?	Flat 4 (up to 10° slope)	or	Hill Slope (more than 10° slope)	
What is the Soil Type?	Gravelly 4	Sandy	Silty	
Tower Height from Ground up to H.C.Saddle (data from bridge profile):	2.4m	3.4m 4	4.4m	
If Rock , what is the Rock Type?	Hard Rock (only few fractures)	Hard Rock (highly fractured)	Soft Rock	
Tower Height	2.0m in	Case of Rock		
	Left Bank Condit	ion		
Geology	Soil			
If Soil , how is the Ground Surface?	Flat (up to 10° slope)	or	Hill Slope (more than 10° slope)	
What is the Soil Type?	Gravelly	Sandy	Silty	
Tower Height from Ground up to H.C.Saddle (data from bridge profile):	2.4m	3.4m	4.4m	
If Rock , what is the Rock Type?	Hard Rock 4 (only few fractures)	Hard Rock (highly fractured)	Soft Rock	
Tower Height2.0min Case of Rock4				

\Rightarrow Selected Anchorage Types:

Right Bank:Block Type 5F, Drawing No. 25DconLeft Bank:Drum Type 1HRS, Drawing No.61Dcon

3. Bridge Standard Drawings

Select the required Steel Drawings and Construction Drawings from the following Drawing List.

3.1 Steel Drawings

Drawing Title	Drawing No	Required Drawing
Well-way Cross Deams	02D or 02D4 or	
walkway Cross Beams	03D or 03D4	
Saddle and Reinforcement for RCC	$20D2 \circ r 20D4$	RB:
Deadman and Gravity Soil Anchor	20D2 0f 20D4	LB:
Saddle and Reinforcement for RCC	20045	RB:
Hard Rock	20045	LB:
Saddle and Reinforcement for Drum	$(0D) \approx (0D)$	RB:
Rock Anchor	00D2 0F 00D4	LB:
Steel Deck	08A, 09A and 10A	08A, 09A, 10A

3.2 Construction Drawings

Drawing Title	Drawing No	Required Drawing
Walkway Fitting	19Dcon70 or 19Dcon106	
Details of Cement Stone Masonry Tower & RCC Core	20Dcon70 or 20Dcon106	
RCC Deadman and Gravity Soil Anchor	21Dcon 35 Dcon	RB:
Block for Flat Ground		LB:
RCC Deadman and Gravity Soil Anchor	41Deen 40Deen	RB:
Block for Hill Slope	41Dcoll	LB:
RCC Single Drum Rock Anchor	(1Doon on (2Doon	RB:
in Hard Rock	01Dcoil of 02Dcoil	LB:
RCC Double Drum Rock Anchor	62Doon on 64Doon	RB:
in Hard Rock	05Dcoll of 04Dcoll	LB:
RCC Single Drum Rock Anchor	(5Deer	RB:
in Soft or Fractured Hard Rock	0512001	LB:
RCC Double Drum Rock Anchor	66Doon	RB:
in Soft or Fractured Hard Rock	00DC0II	LB:
RCC Deadman in Soft or Fractured Hard	(7Deer	RB:
Rock	0/DC0II	LB:

Designed by:

Date:

Date:

Cable hoisted by:

Example:

\Rightarrow Selected Drawings

Steel Drawings

Drawing Title	Drawing No	Required Drawing
Walkway Cross Beams	02D or 02D4 or 03D, or 03D4	02D
Saddle and Reinforcement for RCC	2002 2004	RB: 20D2
Deadman and Gravity Soil Anchor	20D2 or 20D4	LB: x
Saddle and Reinforcement for RCC		RB: x
Deadman Anchor in Soft or Fractured Hard Rock	20D4S	LB: 60D2
Saddle and Reinforcement for Drum Rock	60D2 or 60D4	RB: 60D2
Anchor	00D2 01 00D4	LB: x
Steel Deck	08A, 09A, 10A	08A, 09A, 10A

Construction Drawings

Drawing Title	Drawing No	Required Drawing
Walkway Fitting	19Dcon70 or 19Dcon106	19Dcon70
Details of Cement Stone Masonry Tower & RCC Core	20Dcon70 or 20Dcon106	20Dcon70
RCC Deadman and Gravity Soil Anchor		<i>RB:</i> 25Dcon
Block for Flat Ground	21Dcon35 Dcon	LB: x
RCC Deadman and Gravity Soil Anchor		RB: x
Block for Hill Slope	41Dcon49Dcon	LB: x
RCC Single Drum Rock Anchor		RB: x
in Hard Rock	61Dcon or 62Dcon	LB: 61Dcon
RCC Double Drum Rock Anchor		RB: x
in Hard Rock	63Dcon or 64Dcon	LB: x
RCC Single Drum Rock Anchor		RB: x
in Soft or Fractured Hard Rock	65Dcon	LB: x
RCC Double Drum Rock Anchor		RB: x
in Soft or Fractured Hard Rock	66Dcon	LB: x
RCC Deadman in in Soft or Fractured		RB: x
Hard Rock	67Dcon	LB: x